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5.1 INTRODUCTION 
 

The investigation’s main objective is to collect from platforms of opportunity (merchant ships, 
research vessels) concomitant normalized water-leaving radiance and aerosol optical thickness data over 
the world’s oceans. A global, long-term data set of these variables is needed to verify whether satellite 
retrievals of normalized water-leaving radiance are within acceptable error limits and, eventually, to adjust 
atmospheric correction schemes.  

To achieve this objective, volunteer officers, technicians, and scientists onboard the selected ships 
collect data from portable SIMBAD and Advanced SIMBAD (SIMBADA) radiometers. These instruments 
are specifically designed for evaluation of satellite-derived ocean color. They measure radiance in spectral 
bands typical of ocean-color sensors. The SIMBAD version measures in 5 spectral bands centered at 443, 
490, 560, 670, and 870 nm, and the Advanced SIMBAD version in 11 spectral bands centered at 350, 380, 
412, 443, 490, 510, 565, 620, 670, 750, and 870 nm. Aerosol optical thickness is obtained by viewing the 
sun disk like a classic sun photometer. Normalized water-leaving radiance, or marine reflectance, is 
obtained by viewing the ocean surface through a vertical polarizer in a specific geometry (nadir angle of 
45o and relative azimuth angle of 135o) to minimize direct sun glint and reflected sky radiation. The 
SIMBAD and SIMBADA data, after proper quality control and processing, are delivered to the SIMBIOS 
project office for inclusion in the SeaBASS archive. They complement data collected in a similar way by 
the Laboratoire d’Optique Atmosphérique of the University of Lille, France.   

The SIMBAD and SIMBADA data are used to check the radiometric calibration of satellite ocean-
color sensors after launch and to evaluate derived ocean-color variables (i.e., normalized water-leaving 
radiance, aerosol optical thickness, and aerosol type). Analysis of the SIMBAD and SIMBADA data 
provides information on the accuracy of satellite retrievals of normalized water-leaving radiance, an 
understanding of the discrepancies between satellite and in situ data, and algorithms that reduce the 
discrepancies, contributing to more accurate and consistent global ocean color data sets. 
 
5.2 RESEARCH ACTIVITIES 
 

Since November 2002, SIMBAD measurements were made during 7 research cruises of opportunity, 
bringing to 69 the number of campaigns with SIMBAD measurements realized during the period October 
1996-Otober 2003. These 7 cruises, as well as ongoing and planned cruises, are listed in Table 1 with name 
of cruise, SIMBAD and SIMBADA instrument(s) used, region of measurements, name of operator, and 
dates of measurements. The data were collected In the Pacific Ocean, off the West Coast of the United 
States and Baja California, Mexico (CalCOFI and IMECOCAL cruises), between Peru and New Zealand 
(P500304), and between Australia and Papeete (BEAGLE2003, Leg1). The location of the measurements 
from the first 5 cruises, which have been processed, is displayed in Figure 5.1. The processed data (a total 
of 606 complete data sets) have been transferred to the SeaBASS archive.  
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              Figure 5.1: Geographic location of the SIMBAD data sets acquired since November 1, 2002. 
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Figure 5.2: The calibrated 36 PRSOM neurons: Volume size distribution dV/dLnr. In each 
plot, the data gathered by the corresponding neuron is plotted in black, while their referent 
vector is plotted in gray.  
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Figure 5.3: Same as Figure 5.2, but real part n of the refractive index 
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Figure 5.4: Same as Figure 5.2, but imaginary part k of the refractive index, plotted on a logarithmic scale. 
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Table 5.1.  SIMBAD cruises during November 2002 –October 2003. 
 

–IMECOCAL 0210/11,Ensenada-San Carlos, B/O Francisco de Ulloa, Simbad08, Jushiro Cepeda, 16 Oct - 06 Nov 02 

–IMECOCAL 0301/02, Baja California, B/O Francisco de Ulloa, Simbad08, Jushiro Cepeda, 08 Feb - 15 Feb 03 

–CalCOFI0304, Southern California Bight, R/V Roger Revelle , Simbad03, Haili Wang, 03 Apr - 27 Apr 03 

–IMECOCAL 0304/05, Baja California, B/O Francisco de Ulloa, Simbad06, Jushiro Cepeda, 08 Apr - 22 Apr 03 

–P500304, Southern Pacific, M/V Nacre, Simbad 07 David Cutchin, 24 Apr - 5 May 03  

–IMECOCAL 0307, Baja California, B/O Francisco de Ulloa, Simbad08, Martin de la Cruz, 01 Jul - 22 Jul 03 

–BEAGLE2003, Leg1, Western Pacific, R/V Mirai, Simbad 03/07, SimbadA01, Brian Irvin, 03 Aug - 06 Sep 03 

–BEAGLE2003, Leg2, Eastern Pacific, R/V Mirai, Simbad 03/07, SimbadA01, Gadiel Alarcon, 09 Sep - 16 Oct 03 

–IMECOCAL 0310, Baja California, B/O Francisco de Ulloa, Simbad08, Martin de la Cruz, 10 Oct - 31 Oct 03 

–BEAGLE2003, Leg3, Valparaiso-Santos, R/V Mirai, Simbad 03/07, SimbadA01, Vivian Lutz, 19 Oct - 02 Nov 03 

–OAS1003, Western South Atlantic, R/V Aldebaran, Simbad06, SimbadA02, Denise Vizziano, 26 Oct – 04 Nov 03 
 

 
The history of SIMBAD calibration coefficients and the accuracy of the view angles measured by the 

radiometers have been analyzed. This effort started during the first year of the investigation, but was 
continued the second and third years with additional data. Trends in the calibration coefficients and biases 
in the view angles were removed, and all the SIMBAD data acquired since October 1996 have been re-
processed or processed with adjusted calibration coefficients. Several aspects of satellite ocean-color 
remote sensing have been examined. They include the selection of aerosol models for atmospheric 
correction, the SeaWiFS performance in varied oceanic regions, a new algorithm to retrieve marine 
reflectance and chlorophyll-a concentration based on principal component analysis of atmospheric effects, 
and the SeaWiFS radiometric calibration in the near infrared. An inversion scheme was also developed to 
retrieve aerosol scale height from POLDER and MERIS data. The main results and findings are 
summarized in the next section (see also, below, the list of publications since 2002).  
 
5.3. RESEARCH RESULTS 
 
Aerosol mixtures for ocean color remote sensing 
 

A Probabilistic Self-Organizing Map (PRSOM) has been applied to AERONET retrievals of aerosol 
size distribution and refractive index at island and coastal sites (Figures 5.2, 5.3, and 5.4). The PRSOM 
suggests that there are two strong (likely) situations: weakly absorbing mixtures on the one hand, and 
absorbing dust or urban soot aerosols on the other hand. Intermediate situations are possible, but not 
probable. The weakly absorbing mixtures (Figure 5.5) are very different from the classical (Shettle and 
Fenn, 1979) aerosol models (Figures 5.6 and 5.7). If we assume that AERONET provides representative 
conditions for ocean color remote sensing, two important results have to be emphasized.  First, the classical 
models allow one to process low values of the Angström exponent α (670), but these conditions may not be 
the most encountered, even in the open ocean. Second, the PRSOM mixtures indicate a different 
association between Angström exponent and single scatttering albedo. As expected, it is not possible to 
separate absorbing from weakly absorbing mixtures from a given (observed) ε (χ, 670, 865) (Figures 5.8 
and 5.9). However, within one of the two types of situations, the PRSOM neurons can be clearly identified 
using a directional sampling of the ε parameter (case of POLDER & MISR). Figure 5.9 summarizes the 
directional behavior of ε using a principal component analysis. Three principal components restore 99% of 
the information The principal components of the weakly absorbing mixtures have the same range of 
variability as those of the absorbing mixtures (Figure 5.9b). 
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Figure 5.5: Gravity centers of the eight bins dividing the “open ocean” ensemble. First column is dV/dLnr, 
second column is n, and third column is k. In each plot of dV/dLnr, the corresponding Angström exponent, 
α(670) is indicated in a framed box. 
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Figure 5.6: Phase function and single scattering albedo of the Standard (S-) models, 
(a) and (c), and of the AERONET (A-) models, (b) and (d). 
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Figure 5.7: Spectral behavior of ε for the two sets of aerosol models and three 
scattering angles, χ.  
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Figure 5.8: Histogram of e(c = 120, 670, 865) for the weakly absorbing neurons (a) and the absorbing 
neurons (b).  
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Figure 5.9: The results of a principal component analysis performed on the PRSOM neurons. (a) The first, 
second, anf third eigen vectors of the ε(χ, 670, 865) covariance matrix, for c ranging from 60 to 180o. (b) 
Three-dimensional plot of the first three principal components (PC) of the PRSOM neurons (encoded 
between 0 and 1 for commodity).  The third PC (PC3) is displayed using a color scale. Small circles denote 
absorbing neurons and large circles weakly absorbing neurons. The neuron number is indicated in the 
vicinity of its coordinates. 
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Figure 5.10: SeaWiFS-derived and measured marine reflectance at match-up stations during ACE-Asia. 
Marine reflectance from SeaWiFS is generally underestimated, especially in the blue. 

 
Thus the two types of mixtures cannot be distinguished. However, within the absorbing mixtures, the 

dust neurons are easily separated from the urban/soot neurons. In an operational situation, the sampling of 
the χ space may vary from a pixel to another, but a scalar product between the measured ε and the eigen 
vectors (displayed in Figure 5.9a) can still be computed, even over a restricted χ range. A simple study 
made for a POLDER orbit shows that the PRSOM weakly absorbing mixtures can be always separated by 
computation of their principal components, which may be used in an ocean color processing line. Details 
about the study can be found in Gross et al., (2003) and Gross-Colzy and Frouin (2003).  
 
Evaluation of SeaWiFS-derived marine reflectance and chlorophyll concentration 
 

Marine reflectance, chlorophyll-a concentration, and particulate back-scattering coefficient derived 
from SeaWiFS imagery have been evaluated in various oceanic regions and atmospheric environments. 
These include East Asian Seas (Li et al., 2003), the Black Sea and the Eastern Mediterranean Sea (Sancak 
et al., 2003), and various bio-provinces of the Atlantic Ocean (Frouin et al., 2003).  

Figures 5.10 and 5.11 display retrieved and measured marine reflectance and aerosol optical thickness, 
respectively, at match-up stations during ACE-Asia (R/V Brown cruise). The SeaWiFS marine reflectance 
is generally lower than the measurements, especially in the blue. The SeaWiFS aerosol optical thickness at 
865 nm is larger than the measurements, but its spectral dependence is smaller. Despite the discrepancies, 
retrieved and measured chlorophyll-a concentrations are in fairly good agreement, with a correlation 
coefficient squared of 0.78 and a rms difference of 62%. The lower marine reflectance in the blue may be 
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attributed to absorbing aerosols, not only dust, but also sub-micron particles (soot from diesel fuel and coal 
consumption), as suggested by Li et al. (2003). 

 

 
Figure 5.11: SeaWiFS-derived and measured aerosol optical thickness at match-up stations during ACE-
Asia. Optical thickness from SeaWiFS is often larger at 865 nm, but its spectral dependence is smaller. 
 

Along Atlantic transects in October-November 2001 and March-April 2002 (R/V Ioffe cruise), 
SeaWiFS and HPLC chlorophyll-a concentrations agree qualitatively, but there is overestimation by the 
SeaWiFS algorithm in the oligotrophic waters of both transects (Frouin et al., 2003). Changes in the 
absolute values and in the form of the spectral absorption of the particulate matter are observed in the 
waters of different productivity sampled (Fig. 5.12), and such features are important in the development of 
regional bio-optical algorithms. A general resemblance is noted between particulate back-scattering and 
chlorophyll distributions. This is not surprising, because back-scattering coefficient depends on particulate 
matter in seawater that can originate from phytoplankton as a primary source. But the particulate back-
scattering distributions (Fig. 5.13) also bear a similarity to the aerosol optical thickness distributions in the 
central Atlantic (Fig. 5.14), where high values due to transport of Saharan dust occur.  

The performance of the OC2 and OC4 algorithms to estimate chlorophyll-a concentrations has also 
been tested in two contrasted bio-optical environments, the Black Sea and the Mediterranean Sea (Sancak 
et al., 2003). The in situ bio-optical measurements were made during October 1999 at 25 stations (R/V 
Bilim cruise). Comparisons of the in situ measurements with the concurrent SeaWiFS retrievals indicate 
that the OC2 and OC4 algorithms are not working satisfactorily in both seas. Case 2 waters dominate the 
Black Sea and the failure of the algorithms is expected. On the other hand, failure of the algorithms in the 
Case 1 waters of the Mediterranean Sea may be due to their specific optical properties. Modifying the OC4 
algorithm to include SeaWiFS information at 412 nm yields a better performance in the Mediterranean Sea 
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without degrading performance in the Black Sea. Combining a local algorithm adapted to oligotrophic 
waters of the Mediterranean Sea and OC4 provides the best results overall.  
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Figure 5.12: Spectra of the absorption coefficients of the particulate matter (thick line), phytoplankton 
pigment (dash), and detritus (thin line) in different waters in October-November 2001: NE - North 
eutrophic (Chl=0.77 mg⋅m-3); NM- North mesotrophic (Chl=0.17 mg⋅m-3); NO - North oligotrophic 
(Chl=0.11 mg⋅m-3); EM - Equatorial mesotrophic (Chl=0.32 mg⋅m-3); SO - South oligotrophic (Chl=0.07 
mg⋅m-3); SM - South mesotrophic (Chl=0.38 mg⋅m-3); SE - South eutrophic (Chl=4.9 mg⋅m-3); DP - Drake 
Passage (Chl=0.40 mg⋅m-3). 
 
Atmospheric correction of ocean color via principal component analysis 
 

A methodology has been proposed to retrieve marine reflectance and chlorophyll-a concentration from 
space by decomposing the satellite reflectance, Rp, into principal components (Gross-Colzy and Frouin, 
2003). The components sensitive to the ocean signal (Table 5.2, Fig. 5.15) are combined to retrieve the 
principal components of marine reflectance, Rw, allowing reconstruction of marine reflectance and 
estimation of chlorophyll-a concentration. Multi-layered perceptrons are used to approximate the functions 
relating the useful principal components of satellite reflectance to the principal components of marine 
reflectance (Fig. 5.16). The algorithm is developed and evaluated using non-noisy and noisy synthetic data 
sets created for a wide range of angular and geophysical conditions. In the absence of noise on satellite 
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Figure 5.13: The mean monthly distributions of values of the particle backscattering coefficient in the Atlantic Ocean 
in October 2001 and 2002 derived from SeaWiFS data. 
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Figure 5.14: The mean monthly distributions of values of the aerosol optical thickness over the Atlantic Ocean in 
October 2001 and 2002 derived from SeaWiFS data. 
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Figure 5.15: Eigenvectors of the Rp and Rw covariance matrices. The epi are displayed for λ ranging from 
400 to 900 nm and the ewj for λ ranging from 400 to 700 nm.  
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Figure 5.16. Computed versus desired principal components of marine reflectance, cwj, for j = 1,…,4. 

 

 
Figure 5.17: Computed versus desired marine reflectance, Rw, for 6 SeaWiFS wavelengths: (a) 412, 
(b) 443, (c) 490, (d) 510), (e) 555, and (f) 670 nm. 
 

 

64 



SIMBIOS Project Annual Report  

 reflectance, the relative error on marine reflectance does not exceed 2% (Table 5.3, Fig. 5.17). Accurate 
retrieval of the first principal component of marine reflectance allows a global relative error of 5.4% on 
chlorophyll-a concentration (Table 5.3, Figs. 5.18 and 5.19). In the presence of 1% non-correlated and 5% 
spectrally correlated noise on satellite reflectance, the relative error is increased to 6% and 21%, 
respectively. Application to SeaWiFS imagery yields marine reflectance and chlorophyll-a concentration 
fields that resemble those obtained from the standard SeaWiFS processing (Figs. 5.20, 5.21, 5.22 & 5.23), 
but are generally less contrasted. The marine reflectance spectra retrieved by the two algorithms are 
substantially different (Fig. 5.22). A large number of SeaWiFS spectra are characterized in the blue by low 
values not expected in Case-I waters. Accuracy can be improved by including bio-optical variability in the 
simulated marine reflectance ensembles.  
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Figure 5.18: Relative error (%) on chlorophyll concentration, chla, as a function of (a) chla and (b) 
scattering angle. 
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Figure 5.19: Computed versus desired chlorophyll concentration, chl a, for various noise figures (see 
text for details). 

 
 

Figure 5.20: Marine reflectance at 443 nm, Rw(443), derived using neural network (left) and SeaDAS 
(right), for  SeaWiFS imagery acquired off South Africa on February 14, 1999.  
 
 

66 



SIMBIOS Project Annual Report  

 

450 500 550 600 650
10

−4

10
−3

10
−2

10
−1

NN

λ (nm)

R
w

(λ
)

450 500 550 600 650
10

−4

10
−3

10
−2

10
−1

SeaDAS

λ (nm)

R
w

(λ
)

 
Figure 5.21: Marine reflectance at 555 nm, Rw(555), derived using neural network (left) and SeaDAS 
(right), for  SeaWiFS imagery acquired off South Africa on February 14, 1999.  

  
 

 
 

Figure 5.22: Selected marine reflectance spectra, Rw(λ), obtained using neural network (left) and SeaDAS 
(right), for SeaWiFS imagery acquired off South Africa on February 14, 1999. 
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Figure 5.23. Chlorophyll concentration, chla, in mgm-3 derived from neural network (left) and  SeaDAS 
(right), for SeaWiFS imagery acquired off South Africa on February 14, 1999. 
 
 
 
Table 5.2: Correlation coefficients (%) between the eight principal components of Rp, cpi, and the six 
principal components of Rw, cwj. The correlation coefficients between the cpi and τ(550) and chla are also 
indicated.   

 

 cp1 cp2 cp3 cp4 cp5 cp6 cp7 cp8 

cw1 12.3 73.3 -39.8 -47.4 16.9 -0.1 -5.7 -8.9 

cw2 2.8 17.6 -17.4 56.0 63.6 1.8 29.8 21.2 

cw3 3.9 12.0 -2.3 46.8 10.3 -22.9 -45.2 -40.5 

cw4 1.2 3.7 -1.6 9.9 -5.3 44.1 -58.1 26.5 

cw5 0.0 -1.0 1.2 -3.1 2.0 -38.6 14.7 -14.5 

cw6 -0.2 0.1 0.2 -1.3 0.3 -12.9 -4.4 12.0 

τ(550) -67.6 22.4 -4.2 15.8 -22.6 22.3 19.9 -38.2 

chla 12.1 71.6 -38.0 -51.4 11.0 -0.3 -10.0 -11.3 
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Table 5.3: Mean performance of the neural network algorithm in the absence of noise. The tests are 
performed on the whole data ensemble, the RMS error and bias are computed in the physical units of each 
parameter (in mgm-3 for chla). 
 

 
RMS Err. Rel. Err. (%) R2 (%) Bias 

Rw(412) 0.0012 1.7 99.9 0.0000 

Rw(443) 0.0007 1.4 99.9 0.0000 

Rw(490) 0.0003 0.8 99.9 0.0000 

Rw(510) 0.0001 0.5 99.7 0.0000 

Rw(555) 0.0002 0.9 99.9 0.0000 

Rw(670) 0.0001 1.8 99.9 0.0000 

chla 0.841 5.4 99.3 0.0467 
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